189 research outputs found

    Electronic and atomic shell structure in aluminum nanowires

    Get PDF
    We report experiments on aluminum nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two "magic" series of stable structures are observed: At low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is found to be smooth. A detailed comparison of the experimental results to a theoretical stability analysis indicates that while the main features of the observed electron-shell structure are similar to those of alkali and noble metals, a sequence of extremely stable wires plays a unique role in Aluminum. This series appears isolated in conductance histograms and can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure

    Numerical Investigation, Including Experimental Validation, of an Axially Blown, Stable Arc in Argon

    Get PDF
    In this work we present the outcome of a numerical validation study conducted with an arc model developed within a computational fluid dynamics (CFD) tool. The numerical investigations were aimed at reproducing the spatially resolved temperature data obtained with an experiment in which an axially symmetric argon arc was established in the observation region. The full absorption spectrum has been computed for argon and then compressed with minimum loss of information to a relatively small set of bands. The latter has been used for solving the radiative transfer equation in a computationally affordable, yet accurate way. The comparison between the arc temperature simulated with the reduced absorption data and the measured one is presented

    The Escape Problem in a Classical Field Theory With Two Coupled Fields

    Full text link
    We introduce and analyze a system of two coupled partial differential equations with external noise. The equations are constructed to model transitions of monovalent metallic nanowires with non-axisymmetric intermediate or end states, but also have more general applicability. They provide a rare example of a system for which an exact solution of nonuniform stationary states can be found. We find a transition in activation behavior as the interval length on which the fields are defined is varied. We discuss several applications to physical problems.Comment: 24 page

    Universality in metallic nanocohesion: a quantum chaos approach

    Full text link
    Convergent semiclassical trace formulae for the density of states and cohesive force of a narrow constriction in an electron gas, whose classical motion is either chaotic or integrable, are derived. It is shown that mode quantization in a metallic point contact or nanowire leads to universal oscillations in its cohesive force: the amplitude of the oscillations depends only on a dimensionless quantum parameter describing the crossover from chaotic to integrable motion, and is of order 1 nano-Newton, in agreement with recent experiments. Interestingly, quantum tunneling is shown to be described quantitatively in terms of the instability of the classical periodic orbits.Comment: corrects spelling of one author name on abstract page (paper is unchanged

    Impact of Stark Shifts on the Radiation Cooling of Cu-Dominated Plasmas

    Get PDF
    We study the impact of Stark line shifts reported recently for Cu I transitions on the radiative cooling of Cu-dominated plasmas. The observed detuning in absorption between the hot core and cold shell of the arc leads to a reduction in radiation reabsorption compared to the case where Stark line shifts are neglected. Using a modeling based on a phenomenological treatment of the Stark line shift, we show that this reduction is below 2%

    Quantum Suppression of the Rayleigh Instability in Nanowires

    Full text link
    A linear stability analysis of metallic nanowires is performed in the free-electron model using quantum chaos techniques. It is found that the classical instability of a long wire under surface tension can be completely suppressed by electronic shell effects, leading to stable cylindrical configurations whose electrical conductance is a magic number 1, 3, 5, 6,... times the quantum of conductance. Our results are quantitatively consistent with recent experiments with alkali metal nanowires.Comment: 10 pages, 5 eps figures, updated and expanded, accepted for publication in "Nonlinearity

    On the Stability and Structural Dynamics of Metal Nanowires

    Full text link
    This article presents a brief review of the nanoscale free-electron model, which provides a continuum description of metal nanostructures. It is argued that surface and quantum-size effects are the two dominant factors in the energetics of metal nanowires, and that much of the phenomenology of nanowire stability and structural dynamics can be understood based on the interplay of these two competing factors. A linear stability analysis reveals that metal nanocylinders with certain magic conductance values G=1, 3, 6, 12, 17, 23, 34, 42, 51, 67, 78, 96, ... times the conductance quantum are exceptionally stable. A nonlinear dynamical simulation of nanowire structural evolution reveals a universal equilibrium shape consisting of a magic cylinder suspended between unduloidal contacts. The lifetimes of these metastable structures are also computed.Comment: 8 pages, 6 figure

    Giant Thermoelectric Effect from Transmission Supernodes

    Full text link
    We predict an enormous order-dependent quantum enhancement of thermoelectric effects in the vicinity of a higher-order `supernode' in the transmission spectrum of a nanoscale junction. Single-molecule junctions based on 3,3'-biphenyl and polyphenyl ether (PPE) are investigated in detail. The nonequilibrium thermodynamic efficiency and power output of a thermoelectric heat engine based on a 1,3-benzene junction are calculated using many-body theory, and compared to the predictions of the figure-of-merit ZT.Comment: 5 pages, 6 figure
    corecore